Sponsors of

International i-Power 2019

M Dynalrgji;qlufions @ GSSIST
3 === £
FALcoNsTor  helpsystems = === gw 2

| 3C* @S/\B‘ @ MAXAVA  (@meridian T
S\ MAXIMUM AVATLABILITY UNITED KINGDOM

RAZ-LEE ‘REDB_QURN “RO cket

iSecurity
syn CS O rt i@Utimies 400

IIIIIIIIIIIIIIIIIIIII



International i-Power 2019
i - l I G June 11th to June 12th
Milton Keynes

16 Ways of Accessing
Data by Key

© iPerformance ApS, Denmark




My Backgroeund in Brief

Began working with this platform in the System/38 era
Dedicated performance aficionado

Taught courses in AS/400 performance for IBM
+10 years +20 countries 5 languages

15 years “No cure — no pay” optimization

Director of iPerformance ApS, developer and supplier of GIAPA® >
software using Al to analyze application performance



Why Analyze Read-by-Key?
e wanted to add Al to our software
> enable automatic pinpointing of Remaining

performance optimization potential. 1(3*10/

User programs
incl Java + Unix
11,2 %

.8 million call stacks retrieved
utomaticall / by GiAPA from

> 50 servers worldwide were
\ alyzed.

\

Reading data accounted
fo 40% of resources used.

Writes
8.5%

Updates

Acc -,\»\, methods used appeared 7 0%

very often to be less efficient.




Is it Worth the Effort?

TIME IN

HORS Nordea Liv & Pension

90.0

82.7
80.0

Weekly batch job Monthly batch job

®RUN TIME BEFORE ®RUN TIME NOW @ CpU TIME BEFORE @ CPU TIME NOW

Largest European Power i Site:

New batch application job took
4’2 hours for one division.

Issue: They had 30+ divisions.

Solution: Reduce reads of data
by changing access methods.

Resullt:
43 min run time per division




Preparation for Test

Files/Tables defined:

1. PF CUSTOM_DDS, + LF having customer number as key;,
containing fields like customer address, sales district, amounts, etc.

2. SQL-Table CUSTOM_SQL, + SQL index with customer number as key.
3. SQL-Table TRANS_SQL (traditional sales transactions).
Records’added using “native” I/O:

262144 records in DDS-defined CUSTOM_DDS.

Customer number initiated with values from 0 to 262143.
Rows added using SQL:

1.\, CUSTOM_DDS copied into SQL-defined table CUSTOM_SQL.

2.\\ TRANS_SQL having 5 million rows with column “Customer Number”
containing a random value between 0 and 262143.



“Rules of the Game”

All programs use the same algorithm to calculate the “random” key used for
5.000.000 accesses to the file or table — only access method differs.

Each program accesses all test records/rows 19 times.

Resource usage collected for each test:
» Elapsed time based on time stamps
+ CPU seconds

*\\ Physical DB 1/Os

“Total sales” reported per test verifies that the same records were accessed



Test Environment

Power i model 720 8202 E4D, one processor, 16 GB memory, V/R3MO.

Jobs active:

1. Our test job running 16 programs, each using different access methods
to fetch data from the “Customer Master” 5 million times.

2. GIAPA software (Global i Application Performance Analyzer) collecting
the test job call stack twice per second (CPU usage = 0.08%).

Nane of the read test runs showed any disk |/Os for the files/tables.

CPU usage averaged 54% during all tests (100% is not possible).



CUSTOM_DDS LI]

Access method: Regular “native” I/O:
RPG CHAIN
COBOL READ (Organization indexed, Record Key is ....)

Input file / table:

Call stack statistics on active program
is fetched twice per second:

Seconds | Percent
used of #1

Elapsed time

CPU 19.1 100

QDBGETEY
100,0%




Access method: Call to subprogram using native read by key.
Subprogram is closed after each call.

(RPG LR*On,  COBOL STOPRUN )

Input file / table: CUSTOM_DDS

QDEBCHKLA

/

2,0% |
Seconds | Percent B -
2,0%
used of #1 T B _|qpmcopen
2,0% v 30,3%
QOQSRVIL |
. 4,0% |/
Elapsed time 765.4 2,248  _———
3,1%

QDBGETKY
15,2%

_|QDBOPEM
7,1%

CPU 427.4 2,236

QDMCLOSE
29,3%




3

Access method: Call to subprogram using native read by key.
Subprogram and file is kept open.
(RPG not LR *On, COBOL EXIT PROGRAM or GOBACK)

Input file / table: CUSTOM_DDS

/

Seconds | Percent
used of #1
KEEPCPEMZ

35,0% |

Elapsed time 49.1 144.1

QDEGETEY
55,0%

CPU 27.5 143.8




Input file / table: CUSTOM_DDS ‘4

Access method: Embedded SQL: Select * into :InputRec

from CUSTOM_DDS
where CUSTNO = :KeyForRead

/

QSQROUTE
Seconds | Percent 10,9%
used of #1

__|QQQSRVEL
36,6%

Elapsed time 148.7  436.7

QSQRLUNG |
24,8%

CPU 82.3 430.4

QDEGETMO
0 27,7%




Input file / table:

Access method:

CPU

\

/

Seconds | Percent
used of #1

Elapsed time

147.5

81.6

433.3

426.9

CUSTOM_SQL

S

Embedded SQL: Select * into :InputRec

from CUSTOM_SQL
where CUSTNO = :KeyForRead

QSQROUTE |

11,0%

QDBGETMQO
20,0%

_|QQQSRVEL

44,0%

QSQRLUMG
25,0%




Input file / table: CUSTOM_DDS =

Access method: Embedded SQL: Like #4, but Select limited to
the four columns required by
the program

/

Seconds | Percent Qs
used of #1

Elapsed time 153.8 451.6

 |oogsrvEL
44, 4%,

QSQRUNZ |

20,2%

CPU 85.0 4448

QDBGETMQO|
22,2%




‘7
4

Access method: Embedded SQL: Like #5, but Select limited to
the four columns required by
the program

Input file / table: CUSTOM_SQL

/

QSQROUTE |
Seconds | Percent 17,0%
used of #1

_|QQQSRVEL
44,0%

Elapsed time 1548 4545

QSORLNZ
18,0%

CPU 85.6  447.7

QDEGETMOQO
21,0%




8

Access method: Embedded SQL: Prepare and Select only
the four columns required

Input file / table: CUSTOM_DDS

/
Seconds | Percent EFA
used of #1 QSQLOPEN  |QQQsRVEL
7,1% 24,2%
QSOLCLSE
. 10,1%
Elapsed time 212.0 622.4
QSQRUNG
13,1%
117.2 613.3
_ |QDBEGETMQO

CPU

22,2%

QSQROUTE
22,2%




9

Input file / table: CUSTOM_SQL
Access method: Embedded SQL: Prepare and Select only
the four columns required
/

- Seconds | Percent Qeselist-Nin
7,0%
Used Of #1 QSQLOPEM |

11,0%

QQQSRVEL
32,0%

Elapsed time 213.1 625.8

QSORLING
12,0%

CPU 117.9  616.6

QSQROUTE
19,0%

 |QDBGETMQO
19,0%




Preparation for #10

Create index TSTREADPFR/CUSTOMERL2
on TSTREADPFR/CUSTOM_SQL
(CustNo, SalesThisY, NorOfOrders, CustName, CustZip, CustCat)

“Call Stack

Elapsed time 0.6 1.8 Not Available”
during index

generation
CPU 0.2 1.1

We enable SQL to use “Index-only-access” = No need to access records



10

Access method: Embedded SQL: Select only four columns
using index-only-access

Input file / table: CUSTOM_SQL

/

Seconds | Percent QS&E;%;JJE_
used of #1 ;

_|QQQSRVEL
40,0%

Elapsed time 153.2 4498

QSQRLING
18,0%

CPU 84.4  441.5

QDBGETMQO
26,0%




11

Access method: Embedded SQL: Prepare & select four columns
using index-only-access

Input file / table: CUSTOM_SQL

/

Seconds | Percent [Jiarsrelss
used of #1  |opBGETMQO

QSQROUTE | 26,3%

13,1%

Elapsed time 203.1 596.4

QSQRUNZ |
13,1%

CPU 1123  587.6

_ |ooqsryvEL
23,2%

QSQLCLSE |
16,2%




12

Input files / tables:  CUSTOM_SQL and TRANS_SQL

Access method: Embedded SQL: Key for reading CUSTOM_SQL
origins from sequentially read
table TRANS_SQL

/

Seconds | Percent |Gtyiies
used of #1

Elapsed time 41.4 121.5

CPU 229 1197

. QSQROUTE
89,0%




Input files / tables: = CUSTOM_SQL and TRANS_SQL

Access method: Traditional “native” 1/O:

(RPG CHAIN, COBOL READ with Org. indexed)
Key for reading CUSTOM_SAQL origins from
sequentially read file TRANS_SQL

Elapsed time 34.8 102.1

CPU 19.5 102.2

e [QDBGETKY
100,0%



14

Access method: Binary table lookup. COBOL: SEARCH ALL
RPG: %LOOKUP in array defined with ASCEND

Input file / table: CUSTOM_DDS -> User Space array
(Loading took 0.4 seconds, 78 ms CPU)

Elapsed time /.8 21,4
CPU 4.3 22.8
Time shown includes e -HIED’E.‘EE.EE\
load of table

(Sequential lookup used 5 hours 19 min. elapsed, 3 hours 2 min. CPU!)



Preparation for #15

Read entire CUSTOM_DDS file, load the key and four data fields

used into a User Index - “Our own index-only-access”

y ‘ 4 | 2 N
// , - (((\( ™
‘ \ , //
Elapsed time 09 29 ( @@ e
\ ~ : //
CPU 05 26 \ y
: ' 4
\\\ ‘ 7
-

NOTE: “Difficult” or “Advanced” technically means
“Something | haven’t learned yet ...”



Input file / table: None (we use pre-loaded User Index) ‘I 5
(Alternative: Load used records on the fly)

Access method: Ml-instruction FNDINXEN (Find Index Entry),
available via C Function Library

Elapsed time 8.4 24,6
CPU 4.7 24.7
20 times faster than i [READUIDX
SQL Index-only-access M



16

Input file / table: CUSTOM_DDS read sequentially blockead
and loaded into memory-table

Access method: “Look-up” in hash table in a (user) space

(Hash-Table - Pointer to wanted data is calculated based on key value)

Elapsed time 2.0 5.9

CPU 1.0 5.2

Time shown includes L [READHASH
load of table 100,0% \



Elapsed

mm:

12

O —P—PO—PO—P

2:33.
3:23.

:45.

:28.
:27.
:33.
:34.
:32.
:33.

SS.
34.

49.

0.

1.
4].

0O=0._. N O L D Ok © 00 0O Ol N kP B P, 0

w
~ B

N 00 O
o B~ O

Relativ
pct.
100

2,247
144
437
433
452
455
622
626

450
596

122
102
22

25

Overview of Results of Read-by-key Test Runs

m
19
427
27

82.
81.
85.
85.
117.
117.

84.

112

22

19.

CPU

SECE
.116
422
.496
269
610
025
589
230
866
.203
398
.322
.531
.876
538
. 342
.499
. 730
.997

Relativ
pct.
100

2,236
144
430
427
445
447
613
617

442
588

120
102
23

25
5

File
used
DDS
DDS
DDS
DDS
SQL
DDS
SQL
DDS
SQL
SQL
SQL
SQL

SQL
DDS
DDS

None
None

Description of Action
completed by job

Keyed reads completed
Subpgm reads + sets LR on
Subpgm reading kept open
SQL Fetch of entire record
SQL Fetch of entire record
SQL Fetch Selecting only 4 fields
SQL Fetch Selecting only 4 fields
SQL Prepare + Select of 4 fields
SQL Prepare + Select of 4 fields
Created "IndexOnly" suited SQL index
SQL Fetch selecting only 4 fields
SQL Prepare + Select 4 fields
Transaction file created
SQL using cursor with join
Chain with key from 2nd file
Load + Access binary table in UsrSpc
USRIDX created and Toaded with data
Access through USRIDX Find completed

T S S W S W S W

—

1’
Load + Access hash table in user space 1,

Control total:
"Sales this year"

, 122
, 122
, 122
122,
122,
122,
122,
, 122
122,

122,
, 122,

, 122
122,
, 122

122
122

908,
908,

,908,
908,
,908,

,908,
,908,

677,
677,
677,
677,
677,
677,
677,
677,

677,
677,

677,
677,
677.

677,
677,

,908,677,250
,908,
,908,
908,
908,
908,
908,
,908,
908,

250
250
250
250
250
250
250
250

250
250

250
250
250

250
250






Conclusions so far

DB 1/Os normally always use the lion’s share of all resources.

Efficiency of SQL surpasses native I/Os when used for what it was designed to do.
Only consider optimization when 1/O counts are approaching millions per day.
(OPTIMIZE(*FULL) had no effect.)

Reads

m Writes

u Miscellaneous

19,550 million
DB disk accesses
Representative overview of total
physical + logical DB I/Os from
seven large servers over a ~week.

B OB reads

B OB writes

Programs requested 460,000 million 1/Os
Disk DB Reads in pct of Logical Reads: 2,13
Disk DB Writes in pct of Logical Writes: 17,84



“Oplimization is @ Complex Task™ = false

Modifying program file access is neither difficult nor very time consuming:
The main logic of the program remains intact — we only replace the access method.

Coding the creation and loading of a User Index is an easy task.
(Complete RPG code example may be requested from kp@giapa.com).

A User Index employs main memory efficiently: Only fields included = necessary columns.
NOTE: a User Index is a “permanent object” — it can be saved and restored.

“Locating Optimization Candidates lis @
Complex Task™ = debatable

Next slides exemplify:
1. |\ \How our software presents optimization candidates
2. VA “Do it yourself” instruction — overall straightforward (and possibly bit time consuming).



(= [=]=]
File Edit View Toels Help

3 4 | @ Clear Erase Attn Sysreq Help (B)
GiAPA (c) by Analysis of PF PRODDATA/MMSZRVIT(MMS2ZRVIT) Sales District Details 19-8l-85
iPerformance 2,188 records, 142 deleted. Mot journaled Keyed access path 11:34:28
e File opened by------ > GiAPA <--Opened from/to--> Open  Nbr.of Logical Logical Miscellaneous Seq. Rel.RecNbr
Job name  User name JobNbr F.Nbr YYMMDD hhmmss hhmmss  for  HotSp. DB writes DE reads DB operations Only Span

Total for 1 jobs generating HotSpots for this member 1184 258,792,549
W4RPE483 WCHURCHILL 284374 5 19@8le4 ea4eas a@53988 Input 1184 258,792,549 i 1,665

Files/jobs that may be optimized are automatically displayed.

Data for one day only was selected.

I/0 Statistics since Writes Updates Deletes Logical reads Physical reads Acc.Path Log.Reads

IPL 18-12-38 13:1@ 1,639,571,654 1,736

Input: Data from 198184 888815 to 198184 235945 in library GIAPALIB  member E 198184  Data from January 4th, 2819

F2=Cmd line F3=Exit Fd=5how previcus file F9=5how call stack infe for job Enter=Show next file

Online 1,2

(]




L
File  Edit

=

GiAPA (c) by

iPerformance 2,188 records,

e File opened by------ > GiAPA <--Opened from/to--> Open
Job name User name JobNbr F.Nbr YYMMDD hhmmss hhmmss for
VARPE4ES WCHURCHILL 284374 5 19@led4 eo4868 853988 Input

Summarized HotSpot call stack statistics

View Tools Help
4 | @ Clear Erase Attn Sysreq Help (B)
Analysis of PF PRODDATA/MMS2RVIT(MMS2ZRVIT)

== =]
Sales District Details 19-21-@5
142 deleted. Mot journaled Keyed access path 11:34:33
Nbr.of Logical Logical Miscellaneous Seq. Rel.RecNbr
HotSp. DB writes DE reads DB operations Only Span
1184 258,792,549 i 1,665

showing the most used programs in the intervals where this job acces

Times * of

found Hotsp.
354 29
195 16
136 11
111 9
1a7 9

F2=Cmd line

Active program and library
or class

QDBGETKY Q5Y5S

DATA BASE GET BY KEY

A25RF599 A2TSCPGM

Order Entry Night Batch Process

QMHSNSTA  Q5Y5
SEND 5TATUS MESSAGE

QDBGETSQ  QSYS
DATA BASE GET SEQUENTIAL UNBLOCKED

QDBGETKY Q5YS
DATA BASE GET BY KEY

F3=Exit

Online

Last called user program and library Stmt.nbr.
or class or offset

A25RF599 A2TSCPGM 185966

Order Entry Night Batch Process

A25RF599 A2TSCPGM 73586

Order Entry Night Batch Process

A25RF599 A2TSCPGM 93888

Order Entry Night Batch Process

A25RF599 A2TSCPGM 98lea

Order Entry Night Batch Process

A25RF599 A2TSCPGM SEeee

Order Entry Night Batch Process

1,102




.
| Jeb Performance Summary Sorted by Total CPU Usage
First / last collection interval: 19-01-04 00:00:15 / 19-01-04 23:59:45

|:| Show Hide MaxValues

G Q | Y | \b ¢ | = | D QDP Overview D File Statistics D File Analysis D Call Stadk D Details per Ttv. D Create Graph Data

Giapa Mavigator 2.1

Job name Job user JobMbr Type Mbr. It, RunDate Run time CPUtime used CPU Job Logical Physical Mbr, of Trn/JobQ Erint
Curr.user Threads Poal HotSpots PagesUszed hh:mm:ss hh:mm:ss.s pct. pty 1j0s 1/0s transact hh:mm:ss lines

EI1K160 KDVL.VDTPY 803436 B 5731 2019-01-04  00:06:15 8:11:03.6 34.3 50 903,480,198 28,599,752

*BATCH 30106 B 0 2019-01-04 00:00:00 2:20:46.5 0.0 00 64,743,939 30,051,736 452,961

V4RPE4SE WCHURCHILL 204374 B 1200 2019-01-04 00:39:00 1:52:24.3 37511 693,732,989 2,044,134

PRD M3SRVADM 556173 B 3939 20190104 0O7:34:15 ? 1:39:12.3 10,135 54,575,151 o]

EGRFMa=a nrorwu e Aaoees o dnnnndan A4 nA  anasee x 4nn.nr rinen 4 maw cAn 4 = mer ir nm

=Fql || File Analysis Summary Job VARPEA2E WCHURCHILL 204374 on 2079-01-04

E?:? D ODP Overview D File Name Totals D Call stack D Details per Itv.

gi’; S ® | & | El | C]rrompt for text ["] File Statistics

T'I.?LEI Library File Member File File Flpt Nu.rnl:uer of Murnber of Mumber of Mbr.af Diff. Reuse %o of RRN Spar Potentially

- name name name nbr. type ion writes reads other Ij0s Itvs. RRMs count Itvs., (High-ow) superfl, Ij0s

LTAM PRODDATA MMSZRDET MMSZRDET 2PF I 250,792,585 1,184 263,652,134

REAH PRODDATA MMSZRVIT MMSZRVIT 3 PFE I 250,792,549 1,184 79 1,108 o 1,665 250,790,884

PRODDATA MMSITOTA MMSITOR . ..

EE:; PRODDATA MME2ERKL  MMS2ER) | File Statistics for Job VARPE488 WCHURCHILL 204374 on 2019-01-04

reed  [PRODDATA  MMS2MIUT  MMM2MI ™ ODP Overview [ | File Analysis [ | Call Stack [ | Details per Itv.

EsOI PRODDATA  MMSZMUME  MMS2MU

QPAL PRODDATA MMS2S5EQU  MMS25E G 0 | ¢ 'r | - | D Prompt for text

F5.B]

CPAI Time File Library File Member File th Nu.ml:uer of Mumber of Mumber of Relative Share

=TT number name name name type ion writes reads other 1j0s record nbr Count

MO 05:30:45 5 PRODDATA MMSZRVIT MMS2RVIT PF I 0 242,990,646 a 899 1

KIFF 05:31:01 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 243,224,530 i} 659 1

AER 05:31:16 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 243,455,332 i} 213 1

TBYY 05:31:30 5 PRODDATA MMSZEVIT MMSZRVIT PF I 0 243,675,654 o] 1,214 1

HCEE 05:31:45 5 PRODDATA MMSZRVIT MMS2RVIT PF I 0 243,914,561 a 1,627 1

TBYU 05:32:00 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 244,155,640 i} 1,627 1

*S.B] 05:32:15 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 244,385,870 i} 163 1

LTAM 05:32:31 5 PRODDATA MMSZEVIT MMSZRVIT PF I 0 244,618,817 o] 251 1

AER_ 05:32:45 5 PRODDATA MMSZEVIT MMSZRVIT PF I 0 244,831,249 a 826 1

BMX. 05:33:00 5 PRODDATA MMSZRVIT MMS2RVIT PF I 0 245,066,735 a 251 1

ST 05:33:15 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 245,313,338 i} 1,627 1

RM-I_T 05:33:30 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 245,553,972 i} 1,403 1

Sf*t'lk 05:33:45 5 PRODDATA MMSZEVIT MMSZRVIT PF I 0 245,504,963 u] 1,627 1

XS 05:34:01 5 PRODDATA MMSZRVIT MMS2RVIT PF I 0 245,038,634 a 663 1

E'EEF 05:34:15 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 245,272,339 i} 1,167 1

XHET 05:34:30 5 PRODDATA MMSZEVIT MMSZRNIT PF I 0 246,487,713 i} 1,144 1
05:34:45 5 PEODDATA MMSZENVIT MMSZEVIT PF I 0 246,705,652 [u] 251 1




Einding Read Optimization Candidates

Obtaining file/table I/O-statistics = Totals since last IPL:
DSPFD LIBNAME/*ALL OUTPUT(*OUTFILE)

Significant improvement may be possible if a file/table shows
1. Millions of reads by relatively few different programs,
2. Not too many different records accessed (What is “too many™?)
3. Relatively few (simultaneous) updates / writes (What is “few”?)
(a trigger program could keep a User Index or User Space updated).

To show job 1/O statistics before files are closed:
DSPJOB OUTPUT(*PRINT) OPTION(*OPNF)

Convert tables/files rarely changed and used by most applications to User Indexes!
E.g. zip codes, prices, sales district table, country codes, most parameters.



Thanlk you for your altention !

22238

Questions ?7?




Short video introduction to GIAPA:
https://www.giapa.com/en/product-intro/new-giapa-video/video/giapa

GIAPA

by IPerformance

- > Free “Performance X-ray” offer on www.giapa.com ! € € €



http://www.giapa.com/
https://www.giapa.com/en/product-intro/new-giapa-video/video/giapa

