

16 Ways of Accessing

Data by Key

Kaare Plesner

© iPerformance ApS, Denmark

Began working with this platform in the System/38 era

Dedicated performance aficionado

Taught courses in AS/400 performance for IBM

+10 years +20 countries 5 languages

15 years “No cure – no pay” optimization

Director of iPerformance ApS, developer and supplier of GiAPA®
→

software using AI to analyze application performance

We wanted to add AI to our software

→ enable automatic pinpointing of

performance optimization potential.

3.8 million call stacks retrieved

automatically by GiAPA from

> 50 servers worldwide were

analyzed:

Reading data accounted

for > 40% of resources used.

Access methods used appeared

very often to be less efficient.

QDBGETKY

18.4%

Other QDBGET*

18.5%

Writes

8.5%
Updates

7.0%

Other

QDB* QDM*

(Open, Close)

9.7%

SQL/Query:

QQQ*, QSQ*

16.6%

User programs

incl Java + Unix

11,2 %

Remaining

Q*

10,1%

Nordea Liv & Pension Largest European Power i Site:

New batch application job took

4½ hours for one division.

Issue: They had 30+ divisions.

Solution: Reduce reads of data

by changing access methods.

Result:

43 min run time per division

Files/Tables defined:

1. PF CUSTOM_DDS, + LF having customer number as key,

containing fields like customer address, sales district, amounts, etc.

2. SQL-Table CUSTOM_SQL, + SQL index with customer number as key.

3. SQL-Table TRANS_SQL (traditional sales transactions).

Records added using “native” I/O:

262144 records in DDS-defined CUSTOM_DDS.

Customer number initiated with values from 0 to 262143.

Rows added using SQL:

1. CUSTOM_DDS copied into SQL-defined table CUSTOM_SQL.

2. TRANS_SQL having 5 million rows with column “Customer Number”

containing a random value between 0 and 262143.

All programs use the same algorithm to calculate the “random” key used for

5.000.000 accesses to the file or table – only access method differs.

Each program accesses all test records/rows 19 times.

Resource usage collected for each test:

• Elapsed time based on time stamps

• CPU seconds

• Physical DB I/Os

“Total sales” reported per test verifies that the same records were accessed

Power i model 720 8202 E4D, one processor, 16 GB memory, V7R3M0.

Jobs active:

1. Our test job running 16 programs, each using different access methods

to fetch data from the “Customer Master” 5 million times.

2. GiAPA software (Global i Application Performance Analyzer) collecting

the test job call stack twice per second (CPU usage = 0.08%).

None of the read test runs showed any disk I/Os for the files/tables.

CPU usage averaged 54% during all tests (100% is not possible).

Input file / table: CUSTOM_DDS

Access method: Regular “native” I/O:

RPG CHAIN

COBOL READ (Organization indexed, Record Key is ….)

Seconds

used

Percent

of #1

Elapsed time 34.1 100

CPU 19.1 100

Call stack statistics on active program

is fetched twice per second:

Input file / table: CUSTOM_DDS

Access method: Call to subprogram using native read by key.

Subprogram is closed after each call.

(RPG LR *On, COBOL STOP RUN)

Seconds

used

Percent

of #1

Elapsed time 765.4 2,248

CPU 427.4 2,236

Input file / table: CUSTOM_DDS

Access method: Call to subprogram using native read by key.

Subprogram and file is kept open.

(RPG not LR *On, COBOL EXIT PROGRAM or GOBACK)

Seconds

used

Percent

of #1

Elapsed time 49.1 144.1

CPU 27.5 143.8

Input file / table: CUSTOM_DDS

Access method: Embedded SQL: Select * into :InputRec

from CUSTOM_DDS

where CUSTNO = :KeyForRead

Seconds

used

Percent

of #1

Elapsed time 148.7 436.7

CPU 82.3 430.4

Input file / table: CUSTOM_SQL

Access method: Embedded SQL: Select * into :InputRec

from CUSTOM_SQL

where CUSTNO = :KeyForRead

Seconds

used

Percent

of #1

Elapsed time 147.5 433.3

CPU 81.6 426.9

Input file / table: CUSTOM_DDS

Access method: Embedded SQL: Like #4, but Select limited to

the four columns required by

the program

Seconds

used

Percent

of #1

Elapsed time 153.8 451.6

CPU 85.0 444.8

Input file / table: CUSTOM_SQL

Access method: Embedded SQL: Like #5, but Select limited to

the four columns required by

the program

Seconds

used

Percent

of #1

Elapsed time 154.8 454.5

CPU 85.6 447.7

Input file / table: CUSTOM_DDS

Access method: Embedded SQL: Prepare and Select only

the four columns required

Seconds

used

Percent

of #1

Elapsed time 212.0 622.4

CPU 117.2 613.3

Input file / table: CUSTOM_SQL

Access method: Embedded SQL: Prepare and Select only

the four columns required

Seconds

used

Percent

of #1

Elapsed time 213.1 625.8

CPU 117.9 616.6

Create index TSTREADPFR/CUSTOMERL2

on TSTREADPFR/CUSTOM_SQL

(CustNo, SalesThisY, NbrOfOrders, CustName, CustZip, CustCat)

Seconds

used

Percent

of #1

Elapsed time 0.6 1.8

CPU 0.2 1.1

We enable SQL to use “Index-only-access” → No need to access records

“Call Stack

Not Available”

during index

generation

Input file / table: CUSTOM_SQL

Access method: Embedded SQL: Select only four columns

using index-only-access

Seconds

used

Percent

of #1

Elapsed time 153.2 449.8

CPU 84.4 441.5

Input file / table: CUSTOM_SQL

Access method: Embedded SQL: Prepare & select four columns

using index-only-access

Seconds

used

Percent

of #1

Elapsed time 203.1 596.4

CPU 112.3 587.6

Input files / tables: CUSTOM_SQL and TRANS_SQL

Access method: Embedded SQL: Key for reading CUSTOM_SQL

origins from sequentially read

table TRANS_SQL

Seconds

used

Percent

of #1

Elapsed time 41.4 121.5

CPU 22.9 119.7

Input files / tables: CUSTOM_SQL and TRANS_SQL

Access method: Traditional “native” I/O:

(RPG CHAIN, COBOL READ with Org. indexed)

Key for reading CUSTOM_SQL origins from

sequentially read file TRANS_SQL

Seconds

used

Percent

of #1

Elapsed time 34.8 102.1

CPU 19.5 102.2

Input file / table: CUSTOM_DDS → User Space array

(Loading took 0.4 seconds, 78 ms CPU)

Access method: Binary table lookup. COBOL: SEARCH ALL

RPG: %LOOKUP in array defined with ASCEND

Seconds

used

Percent

of #1

Elapsed time 7.8 21,4

CPU 4.3 22.8

Time shown includes

load of table

(Sequential lookup used 5 hours 19 min. elapsed, 3 hours 2 min. CPU!)

Read entire CUSTOM_DDS file, load the key and four data fields

used into a User Index → “Our own index-only-access”

Seconds

used

Percent

of #1

Elapsed time 0.9 2.9

CPU 0.5 2.6

NOTE: “Difficult” or “Advanced” technically means

“Something I haven’t learned yet …”

Input file / table: None (we use pre-loaded User Index)

(Alternative: Load used records on the fly)

Access method: MI-instruction FNDINXEN (Find Index Entry),

available via C Function Library

Seconds

used

Percent

of #1

Elapsed time 8.4 24,6

CPU 4.7 24.7

20 times faster than

SQL Index-only-access

Input file / table: CUSTOM_DDS read sequentially blocked

and loaded into memory-table

Access method: “Look-up” in hash table in a (user) space

(Hash-Table → Pointer to wanted data is calculated based on key value)

Including

Table load

Seconds

used

Percent

of #1

Elapsed time 2.0 5.9

CPU 1.0 5.2

Time shown includes

load of table

Elapsed Relativ CPU Relativ File Description of Action Control total:

mm:ss.s pct. msec. pct. used completed by job "Sales this year"

34.1 100 19.116 100 DDS Keyed reads completed 1,722,908,677,250

12:45.4 2,247 427.422 2,236 DDS Subpgm reads + sets LR on 1,722,908,677,250

49.1 144 27.496 144 DDS Subpgm reading kept open 1,722,908,677,250

2:28.7 437 82.269 430 DDS SQL Fetch of entire record 1,722,908,677,250

2:27.5 433 81.610 427 SQL SQL Fetch of entire record 1,722,908,677,250

2:33.8 452 85.025 445 DDS SQL Fetch Selecting only 4 fields 1,722,908,677,250

2:34.8 455 85.589 447 SQL SQL Fetch Selecting only 4 fields 1,722,908,677,250

3:32.0 622 117.230 613 DDS SQL Prepare + Select of 4 fields 1,722,908,677,250

3:33.1 626 117.866 617 SQL SQL Prepare + Select of 4 fields 1,722,908,677,250

0.6 .203 SQL Created "IndexOnly" suited SQL index

2:33.2 450 84.398 442 SQL SQL Fetch selecting only 4 fields 1,722,908,677,250

3:23.1 596 112.322 588 SQL SQL Prepare + Select 4 fields 1,722,908,677,250

1.0 .531 Transaction file created

41.4 122 22.876 120 SQL SQL using cursor with join 1,722,908,677,250

34.8 102 19.538 102 DDS Chain with key from 2nd file 1,722,908,677,250

7.8 22 4.342 23 DDS Load + Access binary table in UsrSpc 1,722,908,677.250

0.9 .499 USRIDX created and loaded with data

8.4 25 4.730 25 None Access through USRIDX Find completed 1,722,908,677,250

2.0 6 .997 5 None Load + Access hash table in user space 1,722,908,677,250

Overview of Results of Read-by-key Test Runs

DB I/Os normally always use the lion’s share of all resources.

Efficiency of SQL surpasses native I/Os when used for what it was designed to do.

Only consider optimization when I/O counts are approaching millions per day.

(OPTIMIZE(*FULL) had no effect.) Reads

Writes

Miscellaneous

19,550 million

DB disk accesses

Programs requested 460,000 million I/Os
Disk DB Reads in pct of Logical Reads: 2,13

Disk DB Writes in pct of Logical Writes: 17,84

Representative overview of total

physical + logical DB I/Os from

seven large servers over a ~week.

Modifying program file access is neither difficult nor very time consuming:

The main logic of the program remains intact – we only replace the access method.

Coding the creation and loading of a User Index is an easy task.

(Complete RPG code example may be requested from kp@giapa.com).

A User Index employs main memory efficiently: Only fields included = necessary columns.

NOTE: a User Index is a “permanent object” – it can be saved and restored.

Next slides exemplify:

1. How our software presents optimization candidates

2. A “Do it yourself” instruction – overall straightforward (and possibly bit time consuming).

Files/jobs that may be optimized are automatically displayed.

Data for one day only was selected.

Obtaining file/table I/O-statistics → Totals since last IPL:

DSPFD LIBNAME/*ALL OUTPUT(*OUTFILE)

Significant improvement may be possible if a file/table shows

1. Millions of reads by relatively few different programs,

2. Not too many different records accessed (What is “too many”?)

3. Relatively few (simultaneous) updates / writes (What is “few”?)

(a trigger program could keep a User Index or User Space updated).

To show job I/O statistics before files are closed:

DSPJOB OUTPUT(*PRINT) OPTION(*OPNF)

Convert tables/files rarely changed and used by most applications to User Indexes!

E.g. zip codes, prices, sales district table, country codes, most parameters.

Questions ??

?

? ? ??

→ → → Free “Performance X-ray” offer on www.giapa.com !   

®

Short video introduction to GiAPA:

https://www.giapa.com/en/product-intro/new-giapa-video/video/giapa

http://www.giapa.com/
https://www.giapa.com/en/product-intro/new-giapa-video/video/giapa

